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Central and non-central extensions of multi-graded 
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Abstract. We constmct non-central extensions of the algebras of vector fields and gauge 
transformations in N-dimensional space. In one dimension they reduce to the ordinary 
central extensions occurring in Virasoro and Kac-Moody algebras. 

1. Introduction 

We recall that the Virasoro algebra [I] ,  

C 
[ L ( m ) ,  L(n)] = ( n  - m)L(m+ n )  -- (m3- m)s(m + n) (1.1) 12 

where m, n E H  is the universal central extension of Vea(  I), the algebra of vector fields 
in one dimensions. Recall also that the Kac-Moody algebra is the universal central 
extension of Map(l,g),  the algebra of maps from the circle to the finite-dimensional 
Lie algebra g. It has the brackets 

[ J " ( m ) , J b ( n ) l = f " b 7 ' ( m + n ) + G " h k m s ( m + n )  (1.2) 

where a, b are g indices,pb' are the totally antisymmetric structure constants and Sa* 
is the Killing metric of g. Due to this metric there is no need to distinguish between 
upper and lower g indices, 

It is evident that these algebras admit the following representations when the 
extensions vanish: 

L ( m )  = -i e""J J" (m)=e '"M" (1.3) 

where M" are matrices in some finite-dimensional representation of g. We can immedi- 
ately write down the corresponding generalization of these representations to N- 
dimensional vector fields and maps. 

- r . y m )  = -1 eim'xa* J y m ) = e " . .  M' (1.4) 

wherex,=(x,, ..., x,)andm'=(m', ..., ")are N-dimensiona1vectorsandm.x~ 
m"x, denotes the scalar product of m and x. Since there is no metric on the base 
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manifold, the difference between upper and lower indices is significant. We are thus 
led to define the semi-direct product Vect(N)KMap(N, g) by 

[ L ' ( m ) ,  L " ( n ) ]  = n'L' (m + n )  - m'L' (m + n )  

[L"(m), J b ( n ) ]  = n'Jb(m + n )  

[ J " ( m ) ,  ~ ~ ( n ) ]  = r b ' J ' ( m +  n ) .  
(1.5) 

Strictly speaking, this is the correct algebra on the N-dimensional torus only, but the 
local considerations apply to arbitrary manifolds. 

Because the central extension plays a fundamental role in one dimension, it is 
natural to ask if any generalization to higher dimensions is possible. The purpose of 
this paper is to show that there is a non-central extension which precisely reduces to 

algebras. However, from the construction it will be rather clear that these non-central 
extensions are quite uninteresting. The point is that central extensions in one dimension 
arise naturally from normal ordering in Fock modules, whereas the higher-dimensional 
generalizations have nothing to do  with Fock modules. 

We have previously obtained some results in this direction [ 2 ] ,  but the present 
work gives a more complete treatment of the problem. Moreover, we give here a 
geometrical description of the extensions which explains their appearance. The connec- 
tion with the Hamiltonian formulation of gauge anomalies is also discussed. 

the centra! one in one dimension; We wi!! a!so constact representations ofthe extended 

2. Central extensions 

We first note that Map( N, g) has a central extension which is an immediate general- 
ization of the one-dimensional case. The brackets are 

[ J " ( m ) ,  J b ( n ) ]  = r b ' J C ( m +  n ) + S a b k . m S ( m + n )  (2.1) 

where k, is central and k .  m = k,m". The proof consists of checking the Jacobi identities. 
r *a, ... \ r rbr..> rc,.\v I 

LJ ImJ,LJ L " 1 . J  \ J J J J T . , .  

= [J"( m),fbCdJ'( n + s)]+. . . 
=reg+ fbCdSudk. m8( m + n + s) +. . . 
= r e g + r b ' k . ( m + n  + s ) s ( m +  n + s )  = O  (2.2) 

where reg stand for regular terms, proportional to J d (  m + n + s), and the dots indicate 
the two cyclic permutations. 

However, this central extension is not meaningful because it is not possible to 
generalize it to an extension of Vect(N)KMap(N, g). Because the extension does not 
admit an intertwining action of Vect(N) it is an artefact of the choice of coordinate 
system on the base manifold and not an intrinsic object. To prove this statement is 

dimensions. The only identity which could possibly go wrong is LLJ, and it does: 
s.;fices ;o !hi; ='dY a;;ention !3 s" Abe!iEE; this is the d i n z r y  f??nc!ln" z!gchrz i" N 

[L'(m), [ J ( n ) ,  J(s)l]+[J(s), [ L ' ( m ) ,  J (n) l l+[J (n) ,  [ J ( s ) ,  L ' ( m ) l l  

= [J(s), n'J(m + n ) ]  - [ J ( n ) ,  s"J(m + s ) ]  

= ( n ' k . s - s ' k .  n ) S ( m + n + s ) .  (2.3) 
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In one dimension, this is identically zero because nks - skn = 0 for ordinary commuting 
numbers. When N >  1 the expression vanishes only if k. n = ne and similarly for s. 
However, this equation cannot hold simultaneously for every p = 1,. , . , N and there- 
fore the LJJ Jacobi identity fails. 

The same argument also applies to the Poisson bracket algebra and the Moyal 
algebra of quantum deformed functions, because the ordinary function algebra is a 
special case of these algebras, and hence they do not admit meaningful central 
extensions either. This point has sometimes been overlooked in the literature [3]. 

The proof that Vect( N )  does not admit any central extension has occurred elsewhere 
[4,5], and therefore we only sketch the argument. Let L ( k ) = a . L ( k m ) / a . m ,  k, I E Z ,  
m E A, and a, is a fixed vector. Then it is clear that L ( k )  obeys Vect(l), whose unique 
central extension is the Virasoro algebra. Because this is true for arbitrary m and a,, 
any non-trivial extension of Vect(N) must be cubic. The most general cubic ansatz 
fails the Jacobi identities, except when N = 1. 

3. Non-central extensions 

In this section we reformulate the central extensions of the N = 1 algebras in a fashion 

up to a constant factor by the constraint nS(  n )  = 0, because either S( n )  = 0 or n = 0. 
This condition is evidently preserved by the action of Vect(N)PtMap(N, g) because 
both n and s ( n )  transform trivially; hence the condition is meaningful. 

To formulate our result we need some standard results from differential geometry, 
which were adapted to the present formalism in [5]. 

A tensor field F:(A) is a Vect(N) module with basis {+:;;;;T7(n)}nEA. The action 
of Vect(N) is given by 

which admits a genera!iza!ion !e higher dimensions: The Kronecker de!ta is defined 

L’Ym)+Y;;;;,?(n) 

= (( 1 -A)”+ n”)+:;;,::-T?(m + n )  
P 

- 1 m ~ ~ + : ; . : : . ~ . . - n ( m + n ) +  s;mu+:;:;;z:,(m+n). (3.1) 
;=i j = i  

There is a c(1) submodule R, consisting of tensor fields S,,.. . ,(n) with p totally 

There is a module homomorphism which is dual to the exterior derivative. 
antisymmetric lower indices. The elements in R, are called p-chains. 

8, : Rp + Rp-I 

S, ,... .,( n )  ++ (SPS), ,... +,( n )  = n ”& ,... mD.L .,(n ). (3.2) 

Further, S,_,S, = 0. The R, submodules ker 8, and im S,,, are identified as closed 
and exact p-chains, respectively. We henceforth suppress the index p on this 
homomorphism. 

Let us present the proof that (3.2) defines a homomorphism in the case of one-chains, 
which will be our main concern in this paper. 

L’(m)(SS)n = L’(m)n’S,(n)  

= n’(n’S,(m + n ) + 6 t m .  S ( m + n ) )  

= n * ( , ! i + n ) .  S ( m +  n) = n ’ ( S S ) ( m + n ) .  (3.3) 
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The existence of the homomophism (3 .2 )  makes it possible to consistently require 
that SS = 0 without demanding that S ,  = 0. In the special case that N = 1 we can solve 
this constraint for S( n): nS( n) = 0 implies that S( n )  = 0 except when n =O.  The unique 
solution is thus S( n)  = S( n ) ,  up to a constant factor. When N = 1 we can still consistently 
impose the condition n ’ S ( n )  =0, but the solution is now non-trivial. 

If we replace S ( m + n )  in (1.1-2) by a closed one-chain S ( m + n ) ,  we obtain an 
expression which immediately generalizes to arbitrary N. The following non-central 
extension of Vect(N)KMap(N,g) is a Lie algebra 

[ L “ ( m ) ,  L ’ (n ) ]  = n”L’(m+ n ) -  m’L’(m+ n )  -- m r n ” ( m  - n ) ’ S ( m +  n )  

[ L ” ( m ) ,  J b ( n ) ] =  n ’Jb(m+n)  

C 

24 

(3.4) 

provided that S,(m) is subject to the constraint n . S ( n )  =O. 
The extension of Vect(N), without the constraint, was reported in [Z]. To prove 

that (3.4) is a Lie algebra, we note that the only non-trivial Jacobi identities are LLL, 
LJJ and JJJ, because the others are either trivially true (because [ J ,  SI = [ S ,  SI = 0). 
or follow from the representation condition for tensor fields. LLL was proved in 121 
and the proof of JJJ is identical to the central case (2 .2) ,  since ( m  + n + s)  . S( m + n + 
s) = 0. Remains to check the Jacobi identity which goes wrong for the central extension. 

+ [ ~ ~ ( s ) ,  n’J“(m+ n ) ]  - [ J ” ( n ) ,  s ” ~ ’ ( m + s ) ]  

=reg+Sab-  ( ( n w + s ’ ) ( n  - s ) . S + ( n ’ - s ’ ) m  . S  
k 
2 

+ n r ( s  - m - n ) .  S - s e ( n  - m - s ) ,  S )  = O  (3.5) 

where reg stands for regular terms, proportional to J‘. 

a position-space basis. Let 
To understand the nature of these equations, it is helpful to reformulate them in 

f , ( x )  = E  f,(m) L(f) =xf,(m)iL”(-m). (3.6) 
m m 

Further, we can identify the one-chain with a line integral over some curve C: 

S , ( n )  =L I ei”.. dx, 
27ri 

- 1 i n . =  n . S ( n ) = -  J”(e’”’x)dx,=-e 
2.77 -‘I c 2 T  

(3.7)  
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and this expression vanishes if the curve C is closed. The normalization is such that 
S ( 0 )  = 1 on the unit circle. This motivates the name closed one-forms for the space 
ker 8, : 

[L(fl, U g ) l  

= - 1 f,( m)g,(  n )  -n"L"(-m - n)+ m"L*(-m - n) 
mn 

= L ( f a g  - g .  J f  ( d .  gama.  f - J . f J " J '  g )  dx,. 

By an integration by parts, the extension becomes 

Similarly, if we introduce 

m 

the extension of Map( N, g) takes the form 

[ J ( + ) , J ( + ) I  
k 

= 1 +"(m)lLb(n)  r b c J c ( - m  - n)+ 80b- (n - m ) ,  s ( - m  - n )  
mn ( 2 

(3.11) 
k 

=I([+, + I I - ~  J ( (a",+,  + ) - (+ ,am+)dxr )  
C 

where (4, +)=+'I/? is the Killing form on g. 
We are now in the position to understand why the extensions are non-central in 

more than one dimension. On the circle there is a unique closed curve along which to 
integrate: the entire circle. This curve does not change under arbitrary one-dimensional 
diffeomorphisms, although the points on the curve move relative to each other. The 
latter effect can be compensated by a shift in the integration variable. However, a curve 
embedded in N > 1 dimensions changes form under N-dimensional diffeomorphisms, 
which generically have a component perpendicular to the curve. If the curve is open 
it transforms non-trivially already in one dimension, because and end-points move. 

A trivial way to obtain a closed one-chain is clearly to take an exact one. This is 
achieved by substituting S,(m) = m"R,,(m), R,, E C12, i.e. 

[L"(m) ,  &,(n)]  = nrR-(m + n ) +  C m P R , , ( m  + n )  + 8:mPR,(m + n )  

R, , (m) = - R , ( m )  
iak7 (3.4). The extensions then acquire the forms 

(3.12) 

C -- m"n'm"n'R,,(m+ n) 

Vbkm"n'R,(m + n )  

12 
(3.13) 
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respectively. These extension were also mentioned in [2]. In position space, the 
corresponding result is 

[L(f), L(g) l=  L(f.Jg -g.Jf)+& (( J-J.fJ‘J.g dx, dx, 

[J(6) ,  J(+)I=J([d,  +I) -$ jjs (a“+, a‘+) dx, dx, 

where S is some two-dimensional surface. 
We remark that if more variables are introduced, it is no longer necessary to limit 

ourselves to line and surface integrals. For example, consider the structure of the 
commutator anomaly of current algebra in three space dimensions [6]. It has the form 

S 
(3.14) 

7-r 

where A’ is the gauge potential. We obtain an extension of Map( N, g) of the form 

[ J a ( m ) ,  J b ( n ) ]  = f ’ b c l c ( m + n ) + m ” n ’ R ~ ~ ( m + n )  
(3.16) 

[ J o ( m ) ,  R F J n ) ]  =f” bd R,,(m+ dc n)+fY”R$u(m + n )  
where 

eim’x dabCAcP dx, dx,, dx, ab R , , (m)  = -- 
2 4 ~ ’  (3.17) 

and dab‘=tr({M4, M b ) M ‘ ) .  

4. Representations on bosons and fermions 

We now present a method to construct a class of representations of the non-central 
extension of Vect(N). 

Assume that Lg(m) are generators of Vect(N), X E  T;(l) and Y,ET:(I) are 
representations of this algebra, and 

[ X ( m ) ,  x ( n ) l =  [ W m L  Yu(n)l = YJm), Y,(n)l =o. (4.1) 

Then 

t ” ( m )  = Lg(m)+m”(X(m)+ m .  Y ( m ) )  (4.2) 

ais0 satisfies VecijN). ii aciuaiiy suiiices io prove ihis for Y F = O ,  diie io i k  
homomorphism 6, (3.2). 

[L: (m)  + m”X(m) ,  L i ( n )  + n ’ X (  n ) ]  

= n”L,’(m + n)+ n’n’X(m + n) - m U n 

= n”L,’(m+ n)-m’n’X(m + n ) -  m - n .  (4.3) 

which is the claimed result because mVn”X(m+n)  is invariant under interchange of 
m and n (and, simultaneously, p and v). This construction is intimately related to the 
existence of a connection. In fact, we can identify Y, = f.&, where the latter element 
is conjugate to the Cristoffel symbols. 
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Let us relax the conditions (4.1) to 

[ x ( m ) , X ( n ) l = o  
[ x ( m ) ,  Y J n ) l = S , ( m + n )  (4.4) 

[ Y J m ) ,  Y U ( n ) l = R , , ( m + n )  
where the new operators S, and R,, have to be elements in the modules n, and n2, 
respectively. This follows because the action of L;(m)  on the LHS and RHS of the 
above equations must agree. The commutators of Vect( N )  are now replaced by 

[ L ” ( m ) ,  L”(n) l  
= n’L’(m+n)- m”L’(m+n) 

+ m”n”((n - m )  , S ( m  + n )  + m“n‘R,,(m + n ) )  (4.5) 
which are the previous extensions of Vect( N )  apart from a trivial rescaling. 

It should be noted that this construction gives an independent proof that (4.5) is 
a Lie algebra. Namely, it suffices to check that the conditions (4.4) are consistent. 

We now explain how (4.2) can be used to build representations in the enveloping 
algebra of canonical commutation and anticommutation relations. Following [51, we 
make the following set of definitions. Let a, (m)  be a bosonic vector field and n’’(m) 
its canonical conjugate, subject to the conditions 

[ a , ( m ) , n ” ( n ) ] = s ; ; s ( m + n )  
[a , (m) ,  a - (n ) ]  = [ s ” ( m ) ,  n ’ ( n ) ]  = O .  

( b ( m ) ,  6 ( n ) )  = 8 ; 8 ( m + n )  

(4.6) 

Moreover, let the fermionic scalar field b ( m )  and its conjugate 6 ( m )  satisfy 

{ b ( m ) ,  b ( n ) } = { 6 ( m ) ,  6(n)}=O. (4.7) 

Define further the convolution of two fields by 

a b ( m ) -  1 a ( m - s ) b ( s )  (4.8) 
S E A  

and the derivative acts in momentum space as id’a(s) = s”a(s) .  

satisfies the conditions above. 
With these preliminaries, we can now check that the following set of operators 

L r ( m ) =  -6“id’aJm)- m“a’a,(m) -bia’b(m) 

X ( m ) =  - a . a ( m ) -  N , ( m )  (4.9) 
Y,(m)  = -6bba,(m)= N,a,(m) 

where the number operators satisfy 

[N. (m) ,  n ” ( n ) ] = - n ” ( m + n )  [ M m ) ,  a , ( n ) l = a , ( m + n )  
[ N , ( m ) ,  6(n ) ]=  - 6 ( m + n )  [ N d m ) , b ( n ) l = b ( m + n ) .  (4.10) 

One now checks that 
[L;(m) ,  X ( n ) ]  = n ” X ( m +  n )  
[ L ; ( m ) ,  YJn)]  = n w Y , ( m + n ) +  X m .  Y ( m  + n )  
[ X ( m ) ,  Y v ( n ) ] = N h a , ( m + n ) =  Y * ( m + n ) - S , ( m + n )  (4.11) 

[ Y , ( m ) .  Y,(n)l=O. 
If we substitute these expressions into the commutators, we find that all brackets in 
(3.4) are satisfied. 
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Despite the representability of the non-central extensions, we doubt that they have 
any true significance. The reason is that the central extension of Vect( 1) arises naturally 
when one studies Fock modules, by the normal ordering prescription. Normal ordering 
does not make sense in more than one dimension, because it would give rise to an 
infinite central extension rather than a non-central extension. In fact, the coefficient 
front of the central extension would be proportional to mN-' in N dimensions [ 5 ] .  
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